Illumination Invariants Based on Markov Random Fields

Pavel Vácha Michal Haindl

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

Prague, Czech Republic

http://ro.utia.cz/

08 DAR, Loučeň

Proposed method

Illumination invariance

Results

Conclusion

References

Real Scene – Illumination Dependency

Vácha, Haindl Illumination Invariance

Proposed method

Illumination invariance

Results

Conclusion

References

Material Illumination Variance

Proposed method

Illumination invariance

Results

Conclusion

References

Material Illumination Variance

Results

Conclusion

References

Proposed Method Properties

Illumination variation:

Illumination brightnesses invariant	
Illumination spectruminvariant	
Illumination directionrobust	

Unknown illumination conditions. Single training image per material (texture).

Results

Conclusion

References

Proposed Method Properties

Illumination variation:

Illumination brightnesses invariant	
Illumination spectruminvariant	
Illumination directionrobust	

Unknown illumination conditions. Single training image per material (texture).

Proposed method

Illumination invariance

Results

Conclusion

References

10% Improvement

Correct classification [%] - changing illumination direction.

1. Gaussian pyramid with K levels

- 2. Markovian texture representation
- 3. Estimate of MRF model parameters
- 4. Illumination invariants are derived from the model parameters
- 5. Illumination invariant feature vectors
- 6. Feature vectors are compared in L_1/FC norms

- 1. Gaussian pyramid with K levels
- 2. Markovian texture representation
- 3. Estimate of MRF model parameters
- 4. Illumination invariants are derived from the model parameters
- 5. Illumination invariant feature vectors
- 6. Feature vectors are compared in L_1/FC norms

- 1. Gaussian pyramid with K levels
- 2. Markovian texture representation
- 3. Estimate of MRF model parameters
- 4. Illumination invariants are derived from the model parameters
- 5. Illumination invariant feature vectors
- 6. Feature vectors are compared in L_1/FC norms

Proposed method

Illumination invariance

Results

Conclusion References

MRF-CAR Model

$$Y_r = \sum_{\boldsymbol{s} \in \boldsymbol{I_r}} \boldsymbol{A_s} Y_{r-\boldsymbol{s}} + \boldsymbol{\epsilon_r}$$

- r, s pixel multiindices, r = (row, column)
- Y_r vector value (R, G, B) at texture position r
- I_r causal contextual neighbourhood with size η

A_s unknown parameter matrices

 ϵ_r white noise with zero mean and unknown covariance matrix

Illumination invariance

Results

Conclusion

References

Model Parameter Estimation

Analytical recursive Bayesian estimate for all statistics (A_s, ϵ)

neighbourhood

Two images Y, \tilde{Y} of the same Lambertian surface illuminated with different illumination brightnesses and spectra: $Y_r = B\tilde{Y}_r$

$$Y_{r} = \sum_{s \in I_{r}} A_{s} Y_{r-s} + \epsilon_{r}$$
$$B\tilde{Y}_{r} = \sum_{s \in I_{r}} \tilde{A}_{s} B \tilde{Y}_{r-s} + \tilde{\epsilon}_{r}$$

$$A_s pprox B^{-1} ilde A_s \, B$$

Vácha, Haindl Illumination Invariance

< - > < - > >

Two images Y, \tilde{Y} of the same Lambertian surface illuminated with different illumination brightnesses and spectra: $Y_r = B\tilde{Y}_r$

$$Y_{r} = \sum_{s \in I_{r}} A_{s} Y_{r-s} + \epsilon_{r}$$
$$B\tilde{Y}_{r} = \sum_{s \in I_{r}} \tilde{A}_{s} B \tilde{Y}_{r-s} + \tilde{\epsilon}_{r}$$

$$A_s pprox B^{-1} ilde{A_s} B$$

Vácha, Haindl Illumination Invariance

< - > < - > >

Two images Y, \tilde{Y} of the same Lambertian surface illuminated with different illumination brightnesses and spectra: $Y_r = B\tilde{Y}_r$

$$Y_{r} = \sum_{s \in I_{r}} A_{s} Y_{r-s} + \epsilon_{r}$$
$$B\tilde{Y}_{r} = \sum_{s \in I_{r}} \tilde{A}_{s} B \tilde{Y}_{r-s} + \tilde{\epsilon}_{r}$$

$$A_{s}pprox B^{-1} ilde{A_{s}}\,B$$

Vácha, Haindl Illumination Invariance

< - > < - > >

Illumination Invariants

- 1. trace: tr A_m^k
- **2.** eigenvalues: $\nu_{m,j}$ of A_m^k

$$m = 1, \dots, \eta, k = 1, \dots, K$$
$$m = 1, \dots, \eta, k = 1, \dots, K,$$
$$j = 1, \dots, C$$

- η size of contextual neighbourhood
- C number of spectral planes (C = 3)
- K number of Gaussian pyramid levels

Introduction Proposed method Illumination invariance Results Conclusion References

Illumination Invariants

3.
$$\alpha_1 = \mathbf{1} + Z_r^T V_{zz}^{-1} Z_r$$

4.
$$\alpha_2 = \sqrt{\sum_r \left(Y_r - \sum_{s \in I_r} A_s Y_{r-s}\right)^T \lambda^{-1} \left(Y_r - \sum_{s \in I_r} A_s Y_{r-s}\right)}$$

5.
$$\alpha_3 = \sqrt{\sum_r (Y_r - \mu)^T \lambda^{-1} (Y_r - \mu)}$$

 $Z_r = [Y_{r-i}^T : \forall i \in I_r]^T$ data vector

 λ, V_{zz} model statistics μ mean value of vector Y_r

E

Results

Conclusion

References

Experimental Setup

Textures:

- University of Bonn BTF Database
- 81 illumination directions declination angles [0°,...,75°], azimuth angles [0°,...,360°]
- 15 materials

Results

Conclusion

References

Experimental Setup

Classification:

- Single training image per material
- Nearest neighbour classification

Tests:

- 1. Training image with top illumination
- 2. 10⁵ random samples of training images
 - 3 test sets viewpoint declination angles 0°, 30°, 60°

Results

Conclusion

References

Experimental Setup

Classification:

- Single training image per material
- Nearest neighbour classification

Tests:

- 1. Training image with top illumination
- 10⁵ random samples of training images
 3 test sets viewpoint declination angles 0°, 30°, 60°

Illumination invariance

Results

Conclusion

References

Results – Top Training Image

Correct classification with training image fixed to the top illumination, viewpoint angle 0°

Illumination invariance

Results

Conclusion

References

Results – Random Training Images

Correct classification [%] - one training image per texture

Summary:

- Single training image per material
- Invariant to illumination brightness and spectrum
- Robust to illumination direction
- Illumination knowledge not needed
- 10% improvement over Gabor features / LBP methods

Future Plans:

- Extension to images
- Integration to some CBIR system

Summary:

- Single training image per material
- Invariant to illumination brightness and spectrum
- Robust to illumination direction
- Illumination knowledge not needed
- 10% improvement over Gabor features / LBP methods

Future Plans:

- Extension to images
- Integration to some CBIR system

http://ro.utia.cz/dem.html

- University of Bonn BTF Database, http://btf.cs.uni-bonn.de/
- J. Meseth and G. Müller and R. Klein, Preserving realism in real-time rendering, in: *OpenGL Symposium*, pp., 89–96, 2003.

 P. Vácha, M. Haindl Illumination Invariants Based on Markov Random Fields
 in: Proc. of the 19th International Conference on Pattern Recognition (ICPR'08), accepted, Tampa, Florida, USA, December 2008.

