Natural Material Recognition with Illumination Invariant Textural Features

Pavel Vácha Michal Haindl

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

Prague, Czech Republic

http://ro.utia.cz/

ICPR 2010, Istanbul

▲□▶▲圖▶ Ξ 釣�?

Proposed method

Illumination invariance

Results

Conclusion

References

Real Scene – Illumination Dependency

Vácha, Haindl Material Recognition

Illumination invariance

Results

Conclusion

References

Amsterdam Library of Textures (ALOT)

http://staff.science.uva.nl/~mark/ALOT/

[Burghouts and Geusebroek, 2009]

Vácha, Haindl Material Recognition

Illumination invariance

Results

Conclusion

References

Amsterdam Library of Textures (ALOT)

http://staff.science.uva.nl/~mark/ALOT/

[Burghouts and Geusebroek, 2009]

Conclusion

References

Proposed Method Properties

Illumination variation:

Illumination spectruminvariant
 Local intesity (cast shadows) aprox. invariant
 Illumination directionrobust

Unknown illumination conditions. **Single training image per material (texture).**

References

Proposed Method Properties

Illumination variation:

Illumination spectruminvariant
 Local intesity (cast shadows) aprox. invariant
 Illumination directionrobust

Unknown illumination conditions. Single training image per material (texture).

1. Gaussian-downsampled pyramid with K levels

- 2. Markovian texture representation
- 3. Estimate of MRF model parameters
- 4. Illumination invariants are derived from the model parameters
- 5. Illumination invariant feature vectors
- 6. Feature vectors are compared in L_1/FC norms

- 1. Gaussian-downsampled pyramid with K levels
- 2. Markovian texture representation
- 3. Estimate of MRF model parameters
- 4. Illumination invariants are derived from the model parameters
- 5. Illumination invariant feature vectors
- 6. Feature vectors are compared in L_1/FC norms

- 1. Gaussian-downsampled pyramid with K levels
- 2. Markovian texture representation
- 3. Estimate of MRF model parameters
- 4. Illumination invariants are derived from the model parameters
- 5. Illumination invariant feature vectors
- 6. Feature vectors are compared in L_1/FC norms

Proposed method

Illumination invariance

Results

Conclusion References

MRF-CAR Model

$$Y_r = \sum_{s \in I_r} A_s Y_{r-s} + \epsilon_r$$

- r, s pixel multiindices, r = (row, column)
- Y_r vector value (R, G, B) at texture position r
- I_r causal contextual neighbourhood with size η

A_s unknown parameter matrices

 ϵ_r white noise with zero mean and unknown covariance matrix

Illumination invariance

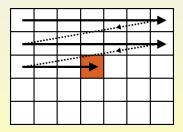
Results

Conclusion

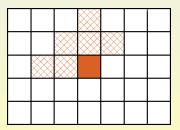
References

Model Parameter Estimation

Analytical recursive Bayesian estimate for all statistics (A_s, ϵ)



movement



neighbourhood I_r

Proposed method

Illumination invariance

Results

ults Conclusion

References

Model Parameter Estimation

$$Z_r = [Y_{r-s}^T : \forall s \in I_r]^T \text{ data vector} \\ \hat{\gamma} = [A_s : \forall s \in I_r] \text{ parameter matrices estimate}$$

Bayesian estimate from the process history $Y_1 \cdots Y_{t-1}$, $Z_1 \cdots Z_{t-1}$:

$$\hat{\gamma}_t \approx \left(\sum_r^{t-1} Z_r Z_r^T\right)^{-1} \left(\sum_r^{t-1} Z_r Y_r^T\right) \approx \left(V_{zz,(t-1)}\right)^{-1} V_{zy,(t-1)}$$

 $V_{yy,(t-1)} \approx \sum_{r=1}^{t-1} Y_r Y_r^T$ used in noise estimation λ_t used in noise estimation

Illumination invariance

Results

Conclusion

< < >> < <</>

References

Model Parameter Estimation

$$Z_r = [Y_{r-s}^T : \forall s \in I_r]^T \text{ data vector} \\ \hat{\gamma} = [A_s : \forall s \in I_r] \text{ parameter matrices estimate}$$

Bayesian estimate from the process history $Y_1 \cdots Y_{t-1}$, $Z_1 \cdots Z_{t-1}$:

$$\hat{\gamma}_t \approx \left(\sum_r^{t-1} Z_r Z_r^T\right)^{-1} \left(\sum_r^{t-1} Z_r Y_r^T\right) \approx \left(V_{zz,(t-1)}\right)^{-1} V_{zy,(t-1)}$$

 $V_{yy,(t-1)} \approx \sum_{r}^{t-1} Y_r Y_r^T$ used in noise estimation, λ_t used in noise estimation Two images Y, \tilde{Y} of the same surface illuminated with different illumination spectra:

 $A_s pprox B^{-1} ilde{A_s} B$

Illumination Invariants:

- 1. trace: tr A_s
- 2. eigenvalues: $\nu_{s,j}$ of A_s

 $s \in I_r$ $s \in I_r, j = 1, \dots, C$

< < >> < <</>

C is number of spectral planes

3.
$$\beta_1 = \log\left(\frac{1}{r-t}|\lambda_r||\lambda_t|^{-1}\right)$$

4.
$$\beta_2 = \log \left(\frac{1}{r-t} |V_{zz(r)}| |V_{zz(t)}|^{-1} \right)$$

5.
$$\beta_3 = \log\left(|V_{zz(r)}||\lambda_r|^{-\eta}\right)$$

$$\textbf{6.} \quad \beta_4 = \mathsf{tr}\left\{V_{yy(r)}\lambda_r^{-1}\right\}$$

9. ...

- 7. utilising prediction probability $p(Y_r|Y^{(r-1)})$
- 8. utilising model probability $p(M|Y^{(r)})$

Results

Conclusion F

References

Experimental Setup

Textures:

- Amsterdam Library of Textures (ALOT)
- 4 cameras, 6 illumination directions,
 - 1 additional illumination with different spectrum
- high resolution RGB images (min 1536 × 660)
- 250 materials

Experimental Setup

Tests:

- [Burghouts and Geusebroek, 2009] without rotation, separate training and test sets (6 + 6 images), perspective projection
- Single training image per material (14 images per material) no perspective projection

Classification:

- Nearest neighbour classification
- 10³ random samples of training images

Results

Experimental Setup

Tests:

- [Burghouts and Geusebroek, 2009] without rotation, separate training and test sets (6 + 6 images), perspective projection
- Single training image per material (14 images per material) no perspective projection

Classification:

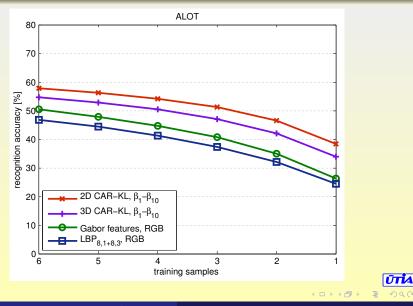
- Nearest neighbour classification
- 10³ random samples of training images

Results

Conclusion

References

Results - [BG, 2009] Without Rotation



Vácha, Haindl Material Recognition

Illumination invariance

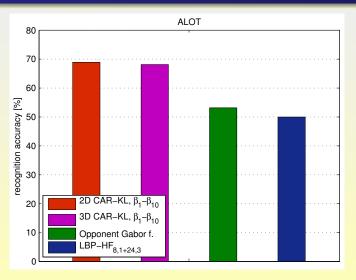
Results

Conclusion

References

ŪTĬA

Results – Single Training Images



Summary:

- Invariant to illumination spectrum and cast shadows
- Robust to illumination direction
- Illumination knowledge not needed
- Single training image per material (for limited viewpoint variation)
- 9-16% improvement over Gabor features, LBP

Future Plans: Rotation invariance Integration to a CBIR system

Summary:

- Invariant to illumination spectrum and cast shadows
- Robust to illumination direction
- Illumination knowledge not needed
- Single training image per material (for limited viewpoint variation)
- 9-16% improvement over Gabor features, LBP

Future Plans:

- Rotation invariance
- Integration to a CBIR system

< □ > < //>
< />

Proposed method

Illumination invariance

Results

Conclusion

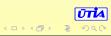
References

Demonstration

http://cbir.utia.cas.cz/

{vacha,haindl}@utia.cz

Thank you for your attention



Illumination invariance

Results

Conclusion

References

Demonstration

http://cbir.utia.cas.cz/ {vacha,haindl}@utia.cz

Thank you for your attention

Amsterdam Library of Textures ALOT. http://staff.science.uva.nl/~mark/ALOT/.

- G. J. Burghouts and J. M. Geusebroek. Material-specific adaptation of color invariant features. *Pattern Recognition Letters*, 30:306–313, 2009.
- P. Vacha and M. Haindl.

Natural material recognition with illumination invariant textural features. In *Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey.* IEEE, 2010. (in press).

